Causalidad

Análisis de la discontinuidad + polinomios de grado alto = ...

Una técnica que, al parecer, es muy del gusto de los economistas es lo del análisis de la discontinuidad. Es como todo lo que tiene que ver con causalImpact pero usando técnicas setenteras (regresiones independientes a ambos lados del punto de corte).

Si a eso le sumas que las regresiones pueden ser polinómicas con polinomios de alto grado… pasan dos cosas:

  • Tienes una probabilidad alta de obtener un resultado significativo, i.e., publicable.
  • Pero que se deba solo al ruido producido por el método (corte discreto, inestabilidad polinómica, etc.).

Es decir, la habitual chocolatada que algunos llaman ciencia (cierto, algunos dirán que mala ciencia, pero que, ¡ah!, nos cobran al mismo precio que la buena).

Goodhart, Lucas y todas esas cosas

Como me da vergüenza que una búsqueda de Goodhart en mi blog no dé resultados, allá voy. Lo de Goodhart, independientemente de lo que os hayan contado, tiene que ver con

es decir, un gráfico causal hiperbásico. Si la variable de interés y es difícil de medir, resulta tentador prestar atención a la variable observable x y usarla como proxy. Todo bien.

Pero también puede interesar operar sobre y y a cierta gente le puede sobrevenir la ocurrencia de operar sobre x con la esperanza de que eso influya sobre y.

Causalidad: malo lo uno, pero tampoco bueno lo otro

Leo en Las causalidades en Economía a Manuel Alejandro Hidalgo dignándose a dar réplica al panfletillo Curva de Laffer: Montoro bajó por fin el IRPF… y recaudó un 6% más.

El último no cuenta apenas más que lo que anuncia en su titulo. El primero quiere enmendarle la plana, pero al hacerlo escribe frases tan chirriantes como:

Insinuar que gracias a la bajada del IRPF por Cristóbal Montoro los ingresos por este tributo se incrementaron en un 6,5% exige, cuando menos, un Trabajo Fin de Máster y de los buenos. Exige muchas semanas de trabajo y mucha econometría, por no decir que exige de un modelo de tu economía que te ayude a manejar de un modo ordenado las ideas, las relaciones causales.

Invertir relaciones causales plausibles exige mucha, mucha explicación

Si yo digo que X llegó a vivir 95 años con salud y añado que siempre siguió una dieta sana, nos parecería muy raro que alguien nos contestase: ¿para qué se sometió X a una dieta sana si, al final, iba a vivir 95 años?

Si digo que el país Y tiene una tasa de patentes por habitantes muy por encima de la media y añado que el gobierno invierte un porcentaje sustancial en I+D, nos parecería muy raro que alguien apostillase: ¿para qué invertir en I+D si, al final, esa gente no para de patentar?

Más sobre correlaciones espurias y más sobre correlación y causalidad

Hoy toca esto:

Se trata de una invitación para leer el artículo Los picos de contaminación coinciden con un aumento radical en los ingresos hospitalarios, un cúmulo de desafueros epilogados por el ya habitual

Los resultados de esta investigación tienen puntos en común con la metodología científica aunque en ningún momento tendrán la misma validez ni tampoco es su intención que la tenga.

Dizque al sexto mes... pero ¿y los datos?

He leído esto, que trata de lo distinta que es

a la izquierda y a la derecha de la línea roja punteada.

La historia contada desde las posterioris basadas en datos difiere de la apriorística (recordad: ideología = priori). En concreto

Reconoceréis una aplicación de causalImpact y lo que significa el gráfico está comentado en todas partes.

Código y datos, por mor de la reproducibilidad, aquí.

¿Importa más la causalidad hoy en día?

Según este artículo, que explora la proporción de palabras relacionadas con la causalidad a lo largo de los dos últimos siglos, parece que sí (para el inglés).

Hice alguna búsqueda muy superficial en los n-gramas de Google y en español estoy obteniendo, precisamente, la tendencia contraria.

A ver si consigo el texto completo del artículo y, si encuentro un momento, trato de replicar lo que pueda. Y si alguien se me adelanta y me ahorra el trabajo, ¡tanto mejor!

Lotería y elecciones: se non è vero...

Incumbent politicians tend to receive more votes when economic conditions are good. In this paper we explore the source of this correlation, exploiting the exceptional evidence provided by the Spanish Christmas Lottery. Because winning tickets are typically sold by one lottery outlet, winners tend to be geographically clustered. This allows us to study the impact of exogenous good economic conditions on voting behavior. We find that incumbents receive significantly more votes in winning provinces. The evidence is consistent with a temporary increase in happiness making voters more lenient toward the incumbent, or with a stronger preference for the status quo.

El impacto causal del óbito del Sr. Botín en la cotización bursátil del benemérito Banco de Santander

R

El Sr. Botín, presidente que fue del Banco de Santander, falleció el 2014-09-10. Cabe preguntarse por el impacto causal à la Google de no continuidad de su gestión a cargo de dicha institución.

Comienzo pues.

Primero los datos:

library(tseries)
library(CausalImpact)

santander <- get.hist.quote(instrument="san.mc",
    start= Sys.Date() - 365*3,
    end= Sys.Date(), quote="AdjClose",
    provider="yahoo", origin="1970-01-01",
    compression="d", retclass="zoo")

bbva <- get.hist.quote(instrument="bbva.mc",
    start= Sys.Date() - 365*3,
    end= Sys.Date(), quote="AdjClose",
    provider="yahoo", origin="1970-01-01",
    compression="d", retclass="zoo")

ibex <- get.hist.quote(instrument="^IBEX",
    start= Sys.Date() - 365*3,
    end= Sys.Date(), quote="AdjClose",
    provider="yahoo", origin="1970-01-01",
    compression="d", retclass="zoo")

obito.botin <- as.Date("2014-09-10")

cotizaciones <- cbind(santander, bbva, ibex)
cotizaciones <- cotizaciones[!is.na(cotizaciones$AdjClose.ibex)]

Con lo anterior, he bajado las cotizaciones diarias de las acciones del Banco de Santander, las del BBVA y la del IBEX 35 durante los últimos tres años. Eso deja la fecha de la muerte del Sr. Botín, aproximadamente, en la mitad.

Los resultados de esta investigación tienen puntos en común con la metodología científica aunque en ningún momento tendrán la misma validez ni tampoco es su intención que la tenga

¡Olé!

Con la frase que titula esta entrada se cierra este artículo tan torero de eldiario.es.

El resto de lo que se publica me viene de perillas para ilustrar a mis alumnos del máster de ciencia de datos de KSchool eso de la dependencia e independencia condicional.

Lo que el artículo argumenta, y que nadie pone en duda, es que altas concentraciones de óxidos de nitrógeno (A) y picos de hospitalizaciones por enfermedades respiratiorias (B), no son eventos independientes. Es decir, que $latex P(A \cap B) \neq P(A)P(B)$. En otros términos, que nuestro conocimiento de A nos permite refinar nuestra estimación de B. Todo correcto.

¿Qué significa "vinculados de forma muy significativa"?

Diríase que dos fenómenos vinculados de forma muy significativa guardan una potente relación causal. Creo que eso es lo que entendería cualquiera.

Traigo pues a colación dos fenómenos. El primero es

suicidios_espana

Y el segundo,

suicidios_espana_suicidios

¿Diríais que están vinculados de forma muy significativa?

Pues si en lugar de fiaros de vuestros propios ojos, lo hacéis de Berta Rivera, Bruno Casal o Luis Currais, los autores de The economic crisis and death by suicide in Spain: Empirical evidence based on a data panel and the quantification of losses in labour productivity; o de David Lombao (que divulga el anterior aquí en El Diario), la respuesta es sí.

La correlación ni siquiera implica "correlación"

Esto es, según Andrew Gelman, la correlación entre dos variables en una muestra ni siquiera implica su “correlación” (entre comillas, por distinguirlas) en la población de interés.

El enlace anterior también discute otras variantes del archiconocido “la correlación no implica causalidad”, tales como

  • la causalidad está correlacionada con la correlación,
  • la falta de correlación está correlacionada con la falta de causalidad,
  • etc.

que, si yo fuera tú, me apresuraría a consultar en el enlace anterior.