Cuantiles

Distribuciones (¿de renta? ¿solo de renta?) a partir de histogramas

En el primer número de la novísima revista Spanish Journal of Statistics aparece un artículo con un título tentador: Recovering income distributions from aggregated data via micro-simulations.

Es decir, un artículo que nos puede permitir, por ejemplo, muestrear lo que la AEAT llama rendimientos a partir de lo que publica (aquí):

Uno de los métodos de los que sostienen el ignominioso a mí me funciona está basado en el modelo

Cuantiles, sí, pero ¿de qué tipo?

Porque resulta que los hay de varios tipos. En R, hasta nueve de ellos:

    set.seed(1234)
    muestra <- sort(rt(100, 3))
    mis.cuantiles <- sapply(1:9, function(tipo) quantile(muestra, 0.834, type = tipo))
    mis.cuantiles
    #    83.4%     83.4%     83.4%     83.4%     83.4%     83.4%     83.4%     83.4%     83.4%
    #0.9065024 0.9065024 0.8951710 0.8997036 0.9053693 0.9331290 0.9015846 0.9077920 0.9063154

Las definiciones de todos ellos pueden consultarse en Sample Quantiles in Statistical Packages.

Las diferencias entre ellos, de todos modos, decrecen conforme aumenta el tamaño muestral:

n.obs <- seq(100, 1e5, by = 1e3)
res <- sapply(n.obs, function(n){
  x <- rt(n, 3)
  diff(range(sapply(1:9, function(tipo)
    quantile(x, 0.834, type = tipo))))
})

plot(n.obs, log10(res), type = "l",
  xlab = "n obs", ylab = "discrepancia",
  main = "Diferencias entre los distintos tipos de cuantiles")

Regresión por cuantiles en R y SAS

Hace un tiempo, con la aburridora perspectiva de un largo viaje en metro hasta mi casa ensombreciendo mi futuro más inminente, decidí regalarme algún tipo de amena lectura. A tal fin, imprimí un articulillo que, bajo la perspectiva de SAS, me introducía a una técnica que se vino a mí como por azar. O, bajo otro punto de vista, una técnica que, también por azar, había esquivado hasta tal fecha un encontronazo con mi husmeadora curiosidad.