Estadística

La interpretación de "significativo" en un caso muy concreto

Comienzo por el final:

En el gráfico anterior se aprecian unos datos, generados mediante

n <- 100
x <- 1:n

y_base <- cos(2 * pi * x / 100)
y <- y_base + rnorm(n, 0, .4)

datos <- data.frame(x = x, y_base = y_base, y = y,
                    cos1 = cos(2 * pi * x / 100),
                    cos2 = cos(4 * pi * x / 100))

a los que se ha ido añadiendo un ruido progresivamente, es decir, una serie de outliers artificiales.

Las líneas rojas representan la predicción realizada mediante un modelo de segundo orden de Fourier (si se me permite), es decir,

Encuestas (electorales), medios y sesgos

Me he entretenido estos días en crear un modelo que represente la siguiente hipótesis de trabajo:

Los encuestadores electorales combinan tres fuentes de información: sus propios datos, el consenso de los restantes encuestadores y la voz de su amo, es decir, el interés de quien paga la encuesta.

Es un modelo en el que se introduce (y se mide) el sesgo que introduce cada casa en los resultados. De momento (¡no fiarse!, léase lo que viene después) he obtenido cosas como estas (para el PP):

La lotería del hardware y la cámara de resonancia académica

El artículo The Hardware Lottery es, hasta cierto punto, informativo. En el fondo, no dice nada que no supiésemos ya: que ciertas ideas, algoritmos, procedimientos, métodos, en diversas disciplinas (¡no en matemáticas!) triunfan esencialmente porque les toca la lotería del hardware. No es que sean las mejores desde una perspectiva actual —podría usar aquí los términos etic y emic a lo ovetense— sino que fueron afortunados y bendecidos por el hecho de estar a la (típicamente, medianeja) altura de los tiempos medidos en términos del desarrollo del hardware.

Máxima verosimilitud vs decisiones

En Some Class-Participation Demonstrations for Introductory Probability and Statistics tienen los autores un ejemplo muy ilustrativo sobre lo lo relativo (en oposición a fundamental) del papel de la máxima verosimilitud (y de la estadística puntual, en sentido lato) cuando la estadística deja de ser un fin en sí mismo y se inserta en un proceso más amplio que implica la toma de decisiones óptimas.

Se trata de un ejemplo pensado para ser desarrollado en una clase. Consiste en un juego en el que el profesor muestra a los alumnos un bote con monedas y les propone que traten de acertar su número exacto. En tal caso, los alumnos se la quedan y pueden repartirse el contenido.

"Introducción a la probabilidad y la estadística para científicos de datos": segunda entrega

Acabo de subir:

  • Modificaciones y correcciones a los dos primeros capítulos.
  • Un tercer capítulo sobre distribuciones de probabilidad.

Queda ampliar, organizar y razonar la biblografía correspondiente a ese tercer capítulo.

Lo más original (con cuádruples comillas) de este capítulo es tal vez la construcción de la función de densidad a partir de histogramas obtenidos a partir de simulaciones de variables aleatorias. Algo sobre lo que creo que escribí en su día en el blog pero que no ubico.

¿A que les ha jugado una mala pasada el Excel?

Se ha dado por cabal en muchos medios lo que espero que no llegue a más que a un borrador. Ha sido publicado por el Banco de España y contiene párrafos como

En cambio, la menor cualificación, por término medio, de los trabajos desempeñados por los jóvenes licenciados españoles sugiere que su nivel de desempleo comparativamente mayor que el de sus homólogos del área del euro podría obedecer, entre otros factores, a una menor calidad de la educación superior.

Distancias (V): el colofón irónico-especulativo

Remato la serie sobre distancias con una entrega especulativa. Según se la mire, o bien nunca se ha hecho esa cosa o bien nunca ha dejado de hacerse.

El problema es que ninguna de las propuestas desgranadas por ahí, incluidas las de mis serie, responde eficazmente la gran pregunta:

¿Son más próximos un individuo y una individua de 33 años o una individua de 33 y otra de 45?

La respuesta es contextual, por supuesto, y en muchos de esos contextos habría que tener en cuenta las interacciones entre variables, que es a lo que apunta la pregunta anterior.

Distancias (IV): la solución rápida y sucia

Prometí (d)escribir una solución rápida y sucia para la construcción de distancias cuando fallan las prêt à porter (euclídeas, Gower, etc.).

Está basada en la muy socorrida y casi siempre falsa hipótesis de independencia entre las distintas variables $latex x_1, \dots, x_n$ y tiene la forma

$$ d(x_a, x_b) = \sum_i \alpha_i d_i(x_{ia}, x_{ib})$$

donde los valores $latex \alpha_i$ son unos pesos que me invento (¡eh!, Euclides también se inventó que $latex \alpha_i = 1$ y nadie le frunció el ceño tanto como a mí tú ahora) tratando de que ponderen la importancia relativa que tiene la variable $latex i$ en el fenómeno que me interesa.

Codificación de categóricas: de (1 | A) a (B | A)

La notación y la justificación de (1 | A) está aquí, una vieja entrada que no estoy seguro de que no tenga que retocar para que no me gruña el ministerio de la verdad.

Esta entrada lo es solo para anunciar que en uno de nuestros proyectos y a resultas de una idea de Luz Frías, vamos a implementar una versión mucho más parecida al lo que podría representar el término (B | A), que es, casi seguro, chorrocientasmil veces mejor.

"Introducción a la probabilidad y la estadística para científicos de datos": primera entrega

Acabo de colgar el primer par de capítulos de mi libro Introducción a la probabilidad y la estadística para científicos de datos. No voy a adelantar nada aquí que no esté contenido en la introducción a la obra (AKA la introducción de la introducción). Pero baste este adelanto:

Las peculiaridades de su público explican algunas de las páginas que siguen. Por ejemplo, en ellas no se encontrará ni rigor, ni ortodoxia ni autocompletitud.