Estadística

"Introducción a la probabilidad y la estadística para científicos de datos": segunda entrega

Acabo de subir:

  • Modificaciones y correcciones a los dos primeros capítulos.
  • Un tercer capítulo sobre distribuciones de probabilidad.

Queda ampliar, organizar y razonar la biblografía correspondiente a ese tercer capítulo.

Lo más original (con cuádruples comillas) de este capítulo es tal vez la construcción de la función de densidad a partir de histogramas obtenidos a partir de simulaciones de variables aleatorias. Algo sobre lo que creo que escribí en su día en el blog pero que no ubico.

¿A que les ha jugado una mala pasada el Excel?

Se ha dado por cabal en muchos medios lo que espero que no llegue a más que a un borrador. Ha sido publicado por el Banco de España y contiene párrafos como

En cambio, la menor cualificación, por término medio, de los trabajos desempeñados por los jóvenes licenciados españoles sugiere que su nivel de desempleo comparativamente mayor que el de sus homólogos del área del euro podría obedecer, entre otros factores, a una menor calidad de la educación superior.

Distancias (V): el colofón irónico-especulativo

Remato la serie sobre distancias con una entrega especulativa. Según se la mire, o bien nunca se ha hecho esa cosa o bien nunca ha dejado de hacerse.

El problema es que ninguna de las propuestas desgranadas por ahí, incluidas las de mis serie, responde eficazmente la gran pregunta:

¿Son más próximos un individuo y una individua de 33 años o una individua de 33 y otra de 45?

La respuesta es contextual, por supuesto, y en muchos de esos contextos habría que tener en cuenta las interacciones entre variables, que es a lo que apunta la pregunta anterior.

Distancias (IV): la solución rápida y sucia

Prometí (d)escribir una solución rápida y sucia para la construcción de distancias cuando fallan las prêt à porter (euclídeas, Gower, etc.).

Está basada en la muy socorrida y casi siempre falsa hipótesis de independencia entre las distintas variables $latex x_1, \dots, x_n$ y tiene la forma

$$ d(x_a, x_b) = \sum_i \alpha_i d_i(x_{ia}, x_{ib})$$

donde los valores $latex \alpha_i$ son unos pesos que me invento (¡eh!, Euclides también se inventó que $latex \alpha_i = 1$ y nadie le frunció el ceño tanto como a mí tú ahora) tratando de que ponderen la importancia relativa que tiene la variable $latex i$ en el fenómeno que me interesa.

Codificación de categóricas: de (1 | A) a (B | A)

La notación y la justificación de (1 | A) está aquí, una vieja entrada que no estoy seguro de que no tenga que retocar para que no me gruña el ministerio de la verdad.

Esta entrada lo es solo para anunciar que en uno de nuestros proyectos y a resultas de una idea de Luz Frías, vamos a implementar una versión mucho más parecida al lo que podría representar el término (B | A), que es, casi seguro, chorrocientasmil veces mejor.

"Introducción a la probabilidad y la estadística para científicos de datos": primera entrega

Acabo de colgar el primer par de capítulos de mi libro Introducción a la probabilidad y la estadística para científicos de datos. No voy a adelantar nada aquí que no esté contenido en la introducción a la obra (AKA la introducción de la introducción). Pero baste este adelanto:

Las peculiaridades de su público explican algunas de las páginas que siguen. Por ejemplo, en ellas no se encontrará ni rigor, ni ortodoxia ni autocompletitud.

Neyman y la definición original de los intervalos de confianza

Se atribuye a Neyman (y particular por su artículo de 1935 On the Problem of Confidence Intervals) la paternidad del concepto de intervalo de confianza. Aunque, leyéndolo y de acuerdo con las referencias bibliográficas de la cosa parece haber precedentes en el innombrable F (sí, el que osaba publicar en el también innombrable Journal of E.).

Lo interesante del tema es que, contrariamente a las reinterpretaciones posteriores, los define tal y como se le ocurrirían a un lego medianamente inteligente:

Una diferencia teórica importante entre los lm y el resto de los glm

[Este es un extracto, una píldora atómica, de mi charla del otro día sobre el modelo de Poisson y al sobredispersión.]

Aunque me guste expresar el modelo lineal de la forma

$$ y_i \sim N(a_0 + \sum_j a_j x_{ij}, \sigma_i)$$

hoy, para lo que sigue, es más conveniente la representación tradicional

$$ y_i = a_0 + \sum_j a_j x_{ij} + \epsilon_i$$

donde si no sabes lo que es cada cosa, más vale que no sigas leyendo.

En defensa de iris

R

El archiconocido conjunto de datos iris es víctima reciente de un ataque relacionado con su pecado original: haber tenido unos padres estigmatizados hoy por su otrora popular idea de que gracias a la ciencia podríamos construir un futuro mejor.

También ha sido víctima de ataques, esta vez más endógenos, relacionados con lo menguado de su tamaño y lo trivial de su estructura.

Vengo aquí a romper una lanza —tres, más bien— en favor de este muy querido de los más conjunto de datos. Tres lanzas esgrimidas, como se verá, en contextos, con fines y ante públicos muy concretos.

De "la fiebre amarilla de Cádiz y pueblos comarcanos" de 1800

Esta entrada está motivada, en última instancia, por la lectura del libro (muy recomendable, por otra parte), The Art of Statistics: Learning From Data, de David Spiegelhalter. Sus muchas virtudes hacen, por contraste, que relumbre particularmente un defecto característico de toda esa creciente literatura sobre el tema: su aburridor anglocentrismo. Que si el médico devenido asesino en serie, que si los cirujanos de Bristol, que si el manidísimo John Snow (que esta vez, en este libro, de casualidad, no aparece),…