Estadística

GBM (III): Más allá de las pérdidas cuadráticas

Liberados del estrecho ámbito de nuestra original mentira sugerente gracias a la relación que descubrimos entre residuos y gradientes cuando las pérdidas son cuadráticas podemos adentrarnos en ámbitos más extensos.

Lo que discutimos del gradiente tiene una interpretación fácilmente inteligible en el caso de pérdidas cuadráticas. Pero ni la pérdida de interpretabilidad nos impide extender el razonamiento de la entrada anterior a funciones de pérdida distintas de la cuadrática siempre que podamos calcular un gradiente.

GBM (II): Minización de funciones, pérdidas cuadráticas, residuos y gradientes

Para minimizar una función $latex \phi(x)$ es habitual utilizar un procedimiento iterativo: a partir de un punto inicial $latex x_0$ se salta a $latex x_1 = x_0 - \lambda \nabla \phi(x_0)$ (donde $latex \lambda$ es un número pequeño predefinido de antemano), y de ahí, sucesivamente, a

$$ x_n = x_{n-1} - \lambda \nabla \phi(x_{n-1}).$$

Porque, típicamente, como cuando uno está en el monte y da un paso corto en la dirección opuesta a la de máxima pendiente, sucede que

GBM (I): Una mentira sugerente

Hace un tiempo resumí los GBMs (Gradient Boosting Machines) en una línea. Hoy comienzo una serie de varias entradas para que nadie tenga excusa de no saber de qué va la cosa. Arranco con una mentira sugerente. Porque lo que voy a contar no es del todo cierto, pero motiva lo que vendrá después.

Consideremos un conjunto de datos medio famoso: el de los precios de los alquileres en Múchich. Comencemos con un modelo sencillo, una regresión lineal que relacione el precio del alquiler con los metros cuadrados, i.e.,

Las distribuciones (y platos) con nombre

Hay platos con nombre. P.e., tortilla de patata o tiramisú. También hay distribuciones (de probabilidad) con nombre. P.e., normal, binomial, Poisson, hipergeométrica.

Hay quienes quieren saber (1) todas (o muchas) de esas distribuciones con nombre y (2), dados unos datos, cuál de ellas siguen. Esta entrada va a tener la url a la que de ahora en adelante remita a quien me las formule.

A pesar de que algunos platos tienen nombre, el otro día se podía probar en el Diverxo espárrago blanco a la mantequilla negra con emulsión de leche de oveja, espardeña y salmonete. Que no es ni tortilla de patata, ni tiramisú ni otra cosa con nombre que se le parezca.

Ruido de alarmas, ruido de p-valores; mucho, mucho ruido, tanto, tanto ruido

Me estoy volviendo intolerante al ruido. Y esta mañana (¿qué carajos hago levantado tan temprano?) no había forma de que dejase de sonar la alarma de unos andamios de la plaza, no paraba la batidora del bar desde donde escribo y, encima, esto, esto, esto, esto, esto, esto,…

Son todas noticias relacionadas con la publicación de esto, un artículo que describe un estudio clínico (¡con 84 sujetos!) en el que se comparan dos grupos (uno tratado y otro no) que,

Encuestas electorales: medios y sesgos (II)

Aquí quedó pendiente hablar de datos y métodos. Los primeros proceden de El Mundo. Solicité a Marta Ley, una coautora, los datos pero, antes de que contestase que sí (¡gracias!), me di cuenta de que podía obtenerlos solito: basta con capturar la llamada que el javascript local hace al servidor.

¿Métodos? Mejorables: se suaviza la intención de voto (con loess) y se estima la diferencia con un modelo de efectos mixtos, i.e.,

modelo<- lmer(delta ~ 1 + (1 | medio),
    data = misdatos)

¿Caveats? Veo dos: el primero, que loess suaviza teniendo en cuenta también observaciones futuras. Los autores de las encuestas no ven la verdad: solo los resultados de las encuestas previas. Debería haber usado como referencia la mejor predicción basada en observaciones pasadas. El segundo, que los porcentajes de los distintos partidos suman un total. Los sesgos no son independientes y yo los modelo como tales.

Encuestas electorales: medios y sesgos (I)

Existen las encuestas electorales. Las publican medios. Algunos, se dice, tienen sesgos. Lo he estudiado y a continuación muestro resultados.

Para el PP:

sesgo_encuestas_pp

Para el PSOE:

sesgo_encuestas_psoe

Para Podemos y cía:

sesgo_encuestas_podemos

Para Ciudadanos:

sesgo_encuestas_ciudadanos

Para IU:

sesgo_encuestas_iu

En otra entrada, datos y métodos. Hoy solo adelanto que el eje horizontal mide puntos porcentuales y que las encuestas se remontan a enero de 2015.

El cincuenta en raya (y el tres en raya)

Supongo que todos conocéis el tres en raya. El cincuenta en (casi) raya, sin embargo, es esto:

cincuenta_en_raya

Hay dos variables, (pluviosidad y ratio hombres/mujeres) y los cincuenta punticos casi en raya corresponden a los estados de EE.UU.

¿Asombrosa correlación? No tanto.

Aquí se discute cómo, en realidad, por su cercanía sociocultural y climática cada uno de los estados del gráfico son manifestaciones de tres grupos de ellos que, estos sí, esta? en raya (¿casualmente?).

Y viene del español, tú

Cada día soy más inculto. He dejado de escuchar música; en el último concierto al que fui maté el tiempo con un jueguito del móvil; la taquillera del teatro de mi barrio se niega a venderme entradas por cuestiones formales (que si son las 18:01 y la taquilla cierra a las 18:00); hace años que no leo ficción; en el Reina Sofía, donde otros ven arte yo encuentro desgana y mis gustos cinematográficos son de lo más estragado.