Libros

Cournot sobre el "efecto Roseto", 120 años antes de tal

Esta entrada abunda sobre una de la semana pasada sobre el llamado efecto Roseto. El Cournot al que alude el titulo es el Cournot famoso (1801-1877) al que, a pesar de ser más conocido por sus aportaciones a la economía, debemos una Exposition de la théorie des chances et des probabilités de 1843.

En su párrafo 114 critica explícitamente el tipo de conclusiones a las que llegan los descuidados exégetas del asunto Roseto y que Stigler comenta así:

¿Viven más los ganadores de los Óscars (que otros actores no premiados)?

La respuesta es sí. Al menos, si haces caso a las principales cuñadofuentes que puedes encontrar buscando en Google sobre el asunto o el cuñadolibro que critiqué el otro día (y que, dicho sea de paso, ilustra el nivel de los sujetos a los que encomendamos la educación de las futuras generaciones patrias).

Pero la respuesta es no. Un estudio de esas características tiene un serio riesgo de selección efectivamente, para ganar un Óscar tienes que haber sobrevivido lo suficiente que el primer y descuidado estudio sobre el asunto no tuvo la precaución de corregir.

Sobre el llamado "efecto Roseto"

Escribí ya hace tiempo (aquí):

Relata lo ocurrido en un pueblo inglés en el que una noche, unos vecinos (presuntamente), descendientes sin duda de aquellos campesinos búlgaros que huían de la vacuna, echaron abajo una antena de telefonía móvil que tenía al pueblo en vilo (la historia, aquí). Porque, resulta, alrededor de ella se habían dado recientemente n casos de cáncer: aquello era un clúster de cáncer. Y puestos a buscar culpables, ¿por qué no el electromagnetismo?

Más capítulos del libro de estadística (y otras cosas y proyectos para 2021)

Por un lado, he publicado tres capítulos más de mi libro de estadística desde el último anuncio. Son el (brevísimo) de introducción a la estadística, y los dedicados a la estadística descriptiva y la estimación puntual.

Hay algunas cosas en ellos que no se encuentran habitualmente en otros manuales. Por ejemplo, en el hecho de plantear determinados modelos como meras herramientas de visualización de datos (o de apoyo a ellas) en el de la estadística descriptiva. También se han recogido en ese capítulo las discusiones relevantes sobre lo que es un missing o un outlier y cómo tratarlos en general.

Sobre el "programa fuerte" de la sociología de la ciencia: una visión desde la "ciencia de datos"

I.

Estos días y por razones que no vienen a cuento, he estado leyendo Fashionable Nonsense. Es un libro que puede describirse como la versión del director del conocido como escándalo Sokal.

Para los no advertidos y según la Wikipedia:

En 1996, Sokal, profesor de física en la Universidad de Nueva York, envió un artículo pseudocientífico para que se publicase en la revista postmoderna de estudios culturales Social Text. Pretendía comprobar que una revista de humanidades «publicará un artículo plagado de sinsentidos, siempre y cuando: a) Suene bien; y b) Apoye los prejuicios ideológicos de los editores (contra las ciencias empíricas)».

"Introducción a la probabilidad y la estadística para científicos de datos": segunda entrega

Acabo de subir:

  • Modificaciones y correcciones a los dos primeros capítulos.
  • Un tercer capítulo sobre distribuciones de probabilidad.

Queda ampliar, organizar y razonar la biblografía correspondiente a ese tercer capítulo.

Lo más original (con cuádruples comillas) de este capítulo es tal vez la construcción de la función de densidad a partir de histogramas obtenidos a partir de simulaciones de variables aleatorias. Algo sobre lo que creo que escribí en su día en el blog pero que no ubico.

Canales (o estéticas), de mejor a peor, según Healy

Data visualization, de Healy, sicólogo sociólogo (gracias al atento comentarista) para más señas, es dizquel nuevo Cleveland. Que lo pone al día 27 años después.

Una muestra del libro:

Se trata de las estéticas (en su acepción ggplot2) ordenadas de mayor a menor efectividad.

[Estoy leyéndolo y nada nuevo bajo el sol; tal vez, sí, el aggiornamiento que de vez en cuando parece que necesitan las cosas para que se oreen las ideas, las tipografías y las paletas de color de los gráficos.]

Algoritmos y ética circa 1950

Estoy corrigiendo las partes de mi libro que tienen que ver con la teoría del a probabilidad para hacerlas más prácticas para quienes llegan a ese mundo no para aprender una serie de reglas operativas que le sirvan para resolver un examen y pasar a otra cosa sino para su trabajo y su vida. Es decir, para asignar probabilidades a eventos.

Y eso me ha llevado a hojear uno de los libros más famosos en los últimos tiempos dedicados al asunto: Superforecasting. En el que he encontrado una referencia a una discusión del perínclito Meehl que dice:

¿Cómo asignar probabilidades? Simetría y universalidad

En los minutos 18 y unos pocos de los siguientes de

se plantea el problema de cómo asignar probabilidades a eventos y el conferenciante, Martin Hairer, discute (¿con ánimo de exhaustividad?) dos: simetría y universalidad.

_[Nota: la discusión es paralela y muy similar a una que aparece en una sección aún no publicada de mi libro de probabilidad y estadística. La relación causal entre ambos hechos es bastante problemática.] _

"Introducción a la probabilidad y la estadística para científicos de datos": primera entrega

Acabo de colgar el primer par de capítulos de mi libro Introducción a la probabilidad y la estadística para científicos de datos. No voy a adelantar nada aquí que no esté contenido en la introducción a la obra (AKA la introducción de la introducción). Pero baste este adelanto:

Las peculiaridades de su público explican algunas de las páginas que siguen. Por ejemplo, en ellas no se encontrará ni rigor, ni ortodoxia ni autocompletitud.

Mi parrafito favorito de "Number Sense"

Acabo de terminar (la última edición corregida y aumentada de) The Number Sense, un libro que libro explora la ubicación de la aritmética básica dentro del eje naturaleza vs crianza y del que me permito compartir mi parrafito favorito:

"Poor Economics": el resumen

Leí hace un tiempo, antes de que concediesen el Nobel a sus autores y porque había oído hablar muy bien de él a un tipo que conozco, Poor Economics.

Es un libro muy deprimente y voy a explicar aquí por qué.

Advierto que escribo de memoria: ni he revisado el libro ni lo que de él anoté para este infrarresumen.

El libro tiene muchas páginas divididas en N+1 capítulos. Los N primeros describen muchos, muchísimos RCTs (¿en el orden de cientos?) agrupados por temas —que si microcréditos, que si redes para los mosquitos para prevenir la malaria,…— en un montón de países. Tienen un denominador común: nada funciona. Todo lo que se ensaya fracasa por los motivos más variopintos.