Paradojas

¿Cómo se interpretan los resultados de estas regresiones

Esta entrada trata sobre las aparentes contradicciones que surgen cuando se comparan las regresiones $y \sim x$ y $x \sim y$. En particular, aqui se muestran

y

que vienen a decir:

  • El tal Rodgers rinde por encima de lo que se espera para su salario.
  • Para lo que rinde, gana demasiado.

Lo cual, a pesar de lo contradictorio, no es un fenómeno extrañísimo. Si uno hace

n <- 100
x <- rnorm(n)

a <- .3
b <- .5
y <- a * x + b + 0.1 * rnorm(100)

reg1 <- lm(y ~ x)
reg2 <- lm(x ~ y)

which.1 <- y > predict(reg1, data.frame(x = x))
which.2 <- x > predict(reg2, data.frame(y = y))
tmp <- cbind(which.1, which.2)
tmp <- which(tmp[,1] & tmp[,2])

ab <- coef(reg2)

plot(x, y)
abline(reg1, col = "blue")
abline(b = 1/ ab[2], a = - ab[1] / ab[2], col = "green")

points(x[tmp], y[tmp], col = "red", pch = 16)

puede obtener tantos gráficos de la forma

La paradoja de Lord, de nuevo

Escribí sobre la paradoja de Lord en 2013 y luego otra vez, tangencialmente, en 2020. Hace poco releí el artículo de Pearl sobre el tema y comoquiera que su visión sobre el asunto es muy distinta de la mía, voy a tratar de desarrollarla.

Aunque supongo que es generalizable, la llamada paradoja de Lord se formuló inicialmente al estudiar y comparar datos antes/después. En su descripción original de mediados de los 60, había niños y niñas a los que se había pesado en junio y en septiembre. El problema (y la paradoja) aparecían al tratar de modelar esa variación de peso según el sexo.

De A/B a DiD

Un test A/B consiste en (o aspira a) estimar (y tal vez promediar) las diferencias

predict(modelo_t, x) - predict(modelo_c, x)

donde modelo_t y modelo_c son modelos construidos en grupos tratados y no tratados de cierta manera.

Entra el tiempo.

Ahora ya no se trata de medir esas diferencias sino las diferencias entre los incrementos antes y después. Que se hace construyendo cuatro modelos para con ellos obtener

(predict(modelo_td, x) - predict(modelo_ta, x)) -

Un resultado probabilístico contraintuitivo (y II)

Va sobre lo de ayer. Hay una demostración de ese resultado contraintutivo aquí. Hay una referencia aquí. Existen discusiones sobre si este resultado se debe a Feller; si no lo es, bien pudiera haberlo sido; la verdad, es muy como de él.

Pero una cosa es la demostración y otra muy distinta, descontraintuitivizar el resultado. Para ello, escuchemos la siguiente conversación entre dos sujetos:

A: No has visto el cierre de la bolsa hoy, ¿verdad?

Un resultado probabilístico contraintuitivo (parte I)

A elige dos números con una distribución de probabilidad cualquiera,

generador <- function() rlnorm(2, 3, 4)

y los guarda ocultos. A B le deja ver uno al azar (sin pérdida de generalidad, el primero). Y B tiene que decidir si el que ve es el más alto de los dos (en cuyo caso, gana un premio, etc.). Veamos a B actuar de manera naive:

estrategia.naive <- function(observed) {
  sample(1:2, 1)
}

Dejemos a A y B jugar repetidamente a este juego:

La paradoja de Berkson

Queremos calentar unas empanadas en el horno y, ¡oh desgracia!, no funciona. Pueden pasar dos cosas (independientes entre sí):

  • El horno está estropeado ($latex A$)
  • El horno está desenchufado ($latex B$)

Hemos observado el evento $latex A \cup B$ y nos preocupa mucho $latex P(A | A \cup B)$, es decir, que tengamos que llamar al técnico y comernos frías las empanadas a la vista de que el horno no responde.

Tres monedas y un argumento falaz

Tiras tres monedas. ¿Cuál es la probabilidad de obtener tres valores (cara o cruz) iguales? Es, lo sabemos todos, 0.25: de las ocho opciones posibles, solo dos cumplen.

Ahora, el argumento falaz —dizque de Francis Galton— que prueba que dicha probabilidad es de 0.5. Es así: de las tres monedas, dos tienen que coincidir necesariamente en valor; entonces la tercera, con probabilidad 0.5, coincidirá con los anteriores y con la misma discrepará.

Una paradoja que no me parece paradójica, la de Bertrand, y una pregunta

La paradoja de Bertrand se formula así: tómense una cuerda al azar en una circunferencia; ¿cuál es la probabilidad de que sea más larga que el lado del triángulo equilátero inscrito?

bertrand

Bertrand resolvió el problema de tres maneras distintas obteniendo tres resultados distintos: 1/2, 1/3 y 1/4. ¿Es eso una paradoja?

La paradoja es consecuencia de que no existe una definición única de cuerda al azar, algunas de las cuales acaban dando más peso a cuerdas más largas y otras menos. En resumen, hay varias maneras razonables de muestrear cuerdas de circunferencias y los resultados pueden ser distintos.

La paradoja de Lord

Hace unos meses una clienta me propuso un problema relativamente (¿aparentemente?) sencillo. Era el siguiente:

  • A cierto número de pacientes se les hizo una medida (de qué, es irrelevante) antes y después de un tratamiento.
  • A unos se les aplicó el tratamiento tradicional (grupo de control).
  • A otros, uno novedoso (grupo de tratamiento).

El objetivo era el obvio: ¿es mejor el nuevo tratamiento? Parece sencillo, ¿verdad?

Hay dos mecanismos obvios para tratar de verificar la hipótesis. El primero es un t-test sobre