Probabilidad

¿Cuántos ancestros tenemos realmente? ¿De dónde vienen?

Es oportuno revisar la entrada Where did your genetic ancestors come from?, que discute la cuestión de cuántos ancestros tenemos realmente (respuesta breve: muchos menos de los que nos hace creer la cuenta que echamos en la servilleta), su diversidad geográfica (posiblemente, mucho menor de la esperada), etc.

El quid de la cuestión radica en la distinción entre ancestros genealógicos y genéticos. Todos tenemos $2^n$ ancestros genealógicos —supuesto que no haya solapamientos— en nuestra $n$-ésima generación precedente, pero solo son propiamente ancestros genéticos una pequeña fracción de ellos (cuando $n$ es lo suficientemente grande). En concreto,

El "teorema" sobre las sumas de lognormales no es solo falso sino que, además, es innecesario (en muchos casos)

I.

Hace un tiempo, reproduje el enunciado del siguiente teorema:

La suma de lognormales (independientes y con parámetros similares) es lognormal.

El teorema no es cierto. No puede serlo tanto por motivos teóricos como meramente empíricos. Es fácil

  1. tomar 3000 muestras de una lognormal con parámetros cualesquiera,
  2. sumarlos por tríos para obtener 1000 muestras $x_i$ de su suma,
  3. ajustar la mejor lognormal que se ajusta a ellos (pista: si se usa MV, los parámetros ajustados son la media y la desviación estándar de $\log x_i$),
  4. comparar las dos muestras (p.e., vía qqplots).

II.

Pero sí que es cierto que:

"Goals based investment" (y su relación con la modelización probabilística)

El motivo para hablar del goals based investment —GBI en lo que sigue— aquí hoy tiene que ver, como se comprobará más abajo, con su relación con la modelización probabilística, la optimización, etc. Se trata de una aproximación a la gestión de las inversiones muy de moda en la banca privada, pero que plantea problemas matemáticos y computacionales entretenidos. Y que, desde luego, no pueden resolverse —al menos, bien— con Excel.

¿Qué distribución usar? ¡Examina el proceso generativo!

Tenía pendiente contar algo sobre el (oscuro) artículo A Brief History of Generative Models for Power Law and Lognormal Distributions. Tiene una cosa buena y una mala.

La buena —y más interesante— es que ilustra cómo pensar sobre la conveniencia de usar una distribución determinada a la hora de modelar un fenómeno concreto. Uno de los procedimientos más fértiles consiste en indagar sobre el proceso generativo que conduce a la distribución en cuestión. Así, usamos la distribución normal porque sabemos que la agregación de pequeños errores etc.; o la Poisson porque tenemos una población muy grande cuyos sujetos tiran monedas al aire etc.; etc.

Otra forma de llegar a la distribución normal

¿Cómo llegamos a la distribución normal? Típicamente, por aplicación —implícita, explícita, rutinaria o litúrgica— del teorema central del límite: una variable aleatoria es normal porque la creemos consecuencia de pequeñas perturbaciones independientes.

Pero hay otra vía.

Supongamos que tenemos tres —o, para el caso, $n > 1$— variables aleatorias continuas independientes con la misma distribución. Su densidad, por tanto, puede factorizarse así:

$$f(x_1, x_2, x_3) = f(x_1) f(x_2) f(x_3).$$

Supongamos además que $f(x_1, x_2, x_3)$ depende solo de $x_1^2 + x_2^2 + x_3^2$, la distancia al origen. De otro modo, que

Aristóteles sobre lo probable y lo improbable (y, más concretamente, sobre la frecuencia de eventos muy improbables)

Un pasaje de un libro que no viene a cuento me puso sobre la pista de una cita de Aristóteles (Retórica, Libro II, Cap. 24), que dice así:

[…] también en los retóricos hay un entimema espurio que se basa en lo que es probable pero no en general, sino probable en determinada circunstancia. Pero ésta no será universal, como lo que dice Agatón:

Quizá alguien diría que eso mismo es probable, que a los mortales les ocurren muchas cosas improbables.

"Ensembles" meteorológicos: ¿probabilísticos o no?

Primero, una brevísima introducción al uso de ensembles en meteorología:

  1. Los metereólogos tienen modelos físicos deterministas que permiten proyectar a futuro el estado presente del tiempo (o de otros estados presentes hipotéticos).
  2. Sin embargo, esos modelos (tanto por su propia naturaleza como por las simplificaciones computacionales sin cuyo concurso las proyecciones serían materialmente inviables) son muy sensibles a las condiciones iniciales de partida (véase la gráfica anterior).
  3. Luego se realizan ensembles, i.e., proyecciones partiendo de pequeñas variaciones de las situaciones iniciales, que luego se agregan de cierta manera (para más detalles, consúltese el libro Física del caos en la predicción meteorológica y, en particular, el capítulo 27).

Y ahora, las preguntas son:

Un problema no tan simple de probabilidades resuelto usando frecuencias naturales

El otro día se propuso un problema de probabilidad sencillo en su planteamiento aunque de solución no trivial (véase el planteamiento y una solución) que tenía como intención original poner a prueba las intuiciones de las probabilidades de eventos.

El problema se enuncia así:

Una pequeñísima proporción de recién nacidos tienen cierto rasgo (genético). Se realizan dos pruebas, A y B, para detectarlo. Sin embargo, las pruebas no son muy precisas:

  • El 70% de los recién nacidos con test A positivo tienen el rasgo (y el 30% no).
  • El 20% de los recién nacidos con test B positivo tienen el rasgo (y el 80% no). También se sabe que las pruebas son independientes en el siguiente sentido:
  • Si un recién nacido tiene el rasgo, el resultado de la prueba A es independiente del de la prueba B.
  • Si un recién nacido no tiene el rasgo, el resultado de la prueba A es independiente del de la prueba B. Ahora, un recién nacido es positivo en ambas pruebas. ¿Puedes estimar la probabilidad de que tenga el rasgo?

Una solución algebraica (con el teorema de Bayes de por medio) puede consultarse en uno de los enlaces proporcionados más arriba. Como anunciaba, sin ser extraordinariamente compleja, no es trivial. También será útil pensar, más que en términos de probabilidades, de odds.

El principio de mediocridad como instrumento para estimar duraciones

Esta entrada trata de explicar cómo utilizar el llamado principio de mediocridad para la estimación de la duración de cosas cuando apenas se sabe nada al respecto. En ese sentido, extiende y fundamente lo que puede leerse aquí.

Planteamiento

Consideremos el conjunto $A$ de todos los pares de números (reales, que todo hay que decirlo) $0 < a < b$.

En todo lo que sigue, $b$ se interpretará como la duración total de algo (la existencia de la especie humana, el número de semanas que una obra teatral estará en cartel, etc.) y $a$ el momento en el que un observador ha contemplado la existencia de ese algo.