probabilidad

El "teorema" sobre las sumas de lognormales no es solo falso sino que, además, es innecesario (en muchos casos)

I. Hace un tiempo, reproduje el enunciado del siguiente teorema: La suma de lognormales (independientes y con parámetros similares) es lognormal. El teorema no es cierto. No puede serlo tanto por motivos teóricos como meramente empíricos. Es fácil tomar 3000 muestras de una lognormal con parámetros cualesquiera, sumarlos por tríos para obtener 1000 muestras $x_i$ de su suma, ajustar la mejor lognormal que se ajusta a ellos (pista: si se usa MV, los parámetros ajustados son la media y la desviación estándar de $\log x_i$), comparar las dos muestras (p.

"Goals based investment" (y su relación con la modelización probabilística)

El motivo para hablar del goals based investment —GBI en lo que sigue— aquí hoy tiene que ver, como se comprobará más abajo, con su relación con la modelización probabilística, la optimización, etc. Se trata de una aproximación a la gestión de las inversiones muy de moda en la banca privada, pero que plantea problemas matemáticos y computacionales entretenidos. Y que, desde luego, no pueden resolverse —al menos, bien— con Excel.

¿Qué distribución usar? ¡Examina el proceso generativo!

Tenía pendiente contar algo sobre el (oscuro) artículo A Brief History of Generative Models for Power Law and Lognormal Distributions. Tiene una cosa buena y una mala. La buena —y más interesante— es que ilustra cómo pensar sobre la conveniencia de usar una distribución determinada a la hora de modelar un fenómeno concreto. Uno de los procedimientos más fértiles consiste en indagar sobre el proceso generativo que conduce a la distribución en cuestión.

Otra forma de llegar a la distribución normal

¿Cómo llegamos a la distribución normal? Típicamente, por aplicación —implícita, explícita, rutinaria o litúrgica— del teorema central del límite: una variable aleatoria es normal porque la creemos consecuencia de pequeñas perturbaciones independientes. Pero hay otra vía. Supongamos que tenemos tres —o, para el caso, $n > 1$— variables aleatorias continuas independientes con la misma distribución. Su densidad, por tanto, puede factorizarse así: $$f(x_1, x_2, x_3) = f(x_1) f(x_2) f(x_3).$$ Supongamos además que $f(x_1, x_2, x_3)$ depende solo de $x_1^2 + x_2^2 + x_3^2$, la distancia al origen.

Aristóteles sobre lo probable y lo improbable (y, más concretamente, sobre la frecuencia de eventos muy improbables)

Un pasaje de un libro que no viene a cuento me puso sobre la pista de una cita de Aristóteles (Retórica, Libro II, Cap. 24), que dice así: […] también en los retóricos hay un entimema espurio que se basa en lo que es probable pero no en general, sino probable en determinada circunstancia. Pero ésta no será universal, como lo que dice Agatón: Quizá alguien diría que eso mismo es probable, que a los mortales les ocurren muchas cosas improbables.

"Ensembles" meteorológicos: ¿probabilísticos o no?

Primero, una brevísima introducción al uso de ensembles en meteorología: Los metereólogos tienen modelos físicos deterministas que permiten proyectar a futuro el estado presente del tiempo (o de otros estados presentes hipotéticos). Sin embargo, esos modelos (tanto por su propia naturaleza como por las simplificaciones computacionales sin cuyo concurso las proyecciones serían materialmente inviables) son muy sensibles a las condiciones iniciales de partida (véase la gráfica anterior). Luego se realizan ensembles, i.

Un problema no tan simple de probabilidades resuelto usando frecuencias naturales

El otro día se propuso un problema de probabilidad sencillo en su planteamiento aunque de solución no trivial (véase el planteamiento y una solución) que tenía como intención original poner a prueba las intuiciones de las probabilidades de eventos. El problema se enuncia así: Una pequeñísima proporción de recién nacidos tienen cierto rasgo (genético). Se realizan dos pruebas, A y B, para detectarlo. Sin embargo, las pruebas no son muy precisas:

El principio de mediocridad como instrumento para estimar duraciones

Esta entrada trata de explicar cómo utilizar el llamado principio de mediocridad para la estimación de la duración de cosas cuando apenas se sabe nada al respecto. En ese sentido, extiende y fundamente lo que puede leerse aquí. Planteamiento Consideremos el conjunto $A$ de todos los pares de números (reales, que todo hay que decirlo) $0 < a < b$. En todo lo que sigue, $b$ se interpretará como la duración total de algo (la existencia de la especie humana, el número de semanas que una obra teatral estará en cartel, etc.

Probabilidades subjetivas: una redefinición "profesional"

Hace un tiempo reproduje en estas páginas (aquí) la definición de probabilidad (en su variante subjetivísima) que dizque Sam Savage aprendió de su padre. La reproduzco aquí: He [L.J. Savage] encouraged me from a young age to think of the probability of an event as the amount I would pay for a gamble that would pay $100 if the event occurred. Pero, ¿cómo hacen los pros? ¿Cómo hacen realmente los que se ganan la vida haciendo estimaciones probabilísticas subjetivas?

Monty Hall, reformulado

Considérese el siguiente juego: Hay tres sobres indistinguibles sobre una mesa. Uno de ellos contiene un premio. Puedes elegir o bien uno de ellos o bien dos de ellos al azar. Convénzase uno de que es mejor elegir dos sobres que uno: tienes una probabilidad de ganar el premio de 2/3 contra la de 1/3 si eliges solo uno. Convénzase uno de que el problema de Monty Hall en su formulación habitual es solo una reformulación artificiosa y engañosa del juego anterior.

Dos cuestiones sobre la naturaleza de la probabilidad planteadas por Keynes en 1921 pero que siguen hoy igual de vigentes

I. A Treatise on Probability, la obra de Keynes (sí, el famoso) de 1921, es un libro muy extraño que se puede leer de muchas maneras. Puede servir, si se hace poco caritativamente, para denunciar el lastimoso estado en el que se encontraba la probabilidad antes de la axiomatización de Kolmogorov, 12 años depués de su publicación. O también, si se hace más cuidadosamente, para rescatar una serie de consideraciones que aun hoy muchos hacen mal en ignorar.

Aún más sobre propagación de errores (y rv)

[Menos mal que se me ha ocurrido buscar en mi propio blog sobre el asunto y descubrir —no lo recordaba— que ya había tratado el asunto previamente en entradas como esta, esta o esta.] El problema de la propagación de errores lo cuentan muy bien Iñaki Úcar y sus coautores aquí. Por resumirlo: tienes una cantidad, $latex X$ conocida solo aproximadamente —en concreto, con cierto error— e interesa conocer y acotar el error de una expresión $latex f(X)$.

Cournot sobre el "efecto Roseto", 120 años antes de tal

Esta entrada abunda sobre una de la semana pasada sobre el llamado efecto Roseto. El Cournot al que alude el titulo es el Cournot famoso (1801-1877) al que, a pesar de ser más conocido por sus aportaciones a la economía, debemos una Exposition de la théorie des chances et des probabilités de 1843. En su párrafo 114 critica explícitamente el tipo de conclusiones a las que llegan los descuidados exégetas del asunto Roseto y que Stigler comenta así: