probabilidad

La falacia de la conjunción desaforada

La falacia, para aquellos que no la conozcan, está descrita aquí. El ejemplo más citado al respecto es el de Linda: Linda tiene 31 años de edad, soltera, inteligente y muy brillante. Se especializó en filosofía. Como estudiante, estaba profundamente preocupada por los problemas de discriminación y justicia social, participando también en manifestaciones anti-nucleares. ¿Que es más probable? Linda es una cajera de banco. Linda es una cajera de banco y es activista de movimientos feministas.

Nuevo vídeo en YouTube: ¿son las probabilidades "subjetivas"? ¿Existe el azar?

El vídeo es y su objetivo es refutar cierta visión muy extraña de la probabilidad que se oye sostener a cierto tipo de personas de vez en cuando, la de que es un fenómeno subjetivo, acompañado frecuentemente por la todavía más extravagante afirmación de que el azar no existe (salvo, tal vez, en el nivel subatómico). Y una vez refutada, el en el vídeo vuelvo a probar una versión alternativa de la afirmación anterior, tal vez más ajustada a la realidad tal cual la veo.

Un argumento para usar la normal: la maximización de la entropía

Llegaré a la normal. Antes, algo sobre la entropía. Nos interesa saber y medir el grado de concentración de una distribución. Por ejemplo, si X es una variable aleatoria con función de densidad $latex f(x)$ y $latex x_1, \dots, x_n$ es una muestra de X, entonces, la expresión $$ \frac{1}{n} \sum_i f(x_i)$$ da una idea de la concentración vs dispersión de X: Si es grande, muchos de los $latex x_i$ procederán de lugares donde $latex f$ es grande; en un caso discreto, que tal vez ayude a mejorar la intuición sobre la cosa, habría muchos valores repetidos.

Sobre sumas de cuadrados de normales con varianzas desiguales

En mi entrada anterior mencioné cómo la suma de cuadrados de normales, aun cuando tengan varianzas desiguales, sigue siendo aproximadamente $latex \chi^2$. Es el resultado que subyace, por ejemplo, a la aproximación de Welch que usa R por defecto en t.test. Puede verse una discusión teórica sobre el asunto así como enlaces a la literatura relevante aquí. Esta entrada es un complemento a la anterior que tiene lo que a la otra le faltan: gráficos.

Tres "teoremas" que son casi ciertos

I. Si $X_1, \dots, X_{12}$ son uniformes en [0,1] e independientes, entonces $latex X_1 + \dots + X_{12} - 6$ es una variable aleatoria normal. Puede entenderse como un corolario práctico del teorema central del límite habida cuenta de que la varianza de $latex X_i$ es 1/12 y su media es 1/2. Es útil porque, se ve, en algunos dispositivos embebidos no se dispone de una librería matemática extensa y, se ve, a veces hace falta muestrear la normal.

El teorema de Bayes como la versión modal del modus tollens

El otro día alguien argumentaba (de una manera que no voy a adjetivar): La lógica (proposiciona, de primer orden) es importante (si lo que se pretende es actuar racionalment), la probabilidad no tanto. El teorema de Bayes es solo un resultado trivial dentro de una disciplina mucho menos relevante que la lógica. Ergo, ¿por qué tanto coñacito con el dichoso teorema de Bayes? Como había alguien equivocado en internet, sonaron todas las alarmas que tengo colocadas en casa y tuve que acudir a enderezar el tuerto.

Estos keynesianos ven el mundo de una manera muy, muy loca

[Y no, no me refiero (hoy) a los seguidores del Keynes de la “Teoría general del empleo, el interés y el dinero” sino a los de su “Tratado sobre probabilidades”. Misma persona, distinto libro, distinta disciplina. Y excúseme el “clickbait”: no podía no hacerlo.] Keynes escribió en 1921 su Tratado de probabilidades, según la Wikipedia, una contribución a las bases matemáticas y filosóficas de la teoría de la probabilidad. Le falta añadir descabellada (aunque, como se verá después, tiene su punto), superada y felizmente olvidada.

"Introducción a la probabilidad y la estadística para científicos de datos": segunda entrega

Acabo de subir: Modificaciones y correcciones a los dos primeros capítulos. Un tercer capítulo sobre distribuciones de probabilidad. Queda ampliar, organizar y razonar la biblografía correspondiente a ese tercer capítulo. Lo más original (con cuádruples comillas) de este capítulo es tal vez la construcción de la función de densidad a partir de histogramas obtenidos a partir de simulaciones de variables aleatorias. Algo sobre lo que creo que escribí en su día en el blog pero que no ubico.

¿Cómo asignar probabilidades? Simetría y universalidad

En los minutos 18 y unos pocos de los siguientes de se plantea el problema de cómo asignar probabilidades a eventos y el conferenciante, Martin Hairer, discute (¿con ánimo de exhaustividad?) dos: simetría y universalidad. _[Nota: la discusión es paralela y muy similar a una que aparece en una sección aún no publicada de mi libro de probabilidad y estadística. La relación causal entre ambos hechos es bastante problemática.] _

"Introducción a la probabilidad y la estadística para científicos de datos": primera entrega

Acabo de colgar el primer par de capítulos de mi libro Introducción a la probabilidad y la estadística para científicos de datos. No voy a adelantar nada aquí que no esté contenido en la introducción a la obra (AKA la introducción de la introducción). Pero baste este adelanto: Las peculiaridades de su público explican algunas de las páginas que siguen. Por ejemplo, en ellas no se encontrará ni rigor, ni ortodoxia ni autocompletitud.

Una diferencia teórica importante entre los lm y el resto de los glm

[Este es un extracto, una píldora atómica, de mi charla del otro día sobre el modelo de Poisson y al sobredispersión.] Aunque me guste expresar el modelo lineal de la forma $$ y_i \sim N(a_0 + \sum_j a_j x_{ij}, \sigma_i)$$ hoy, para lo que sigue, es más conveniente la representación tradicional $$ y_i = a_0 + \sum_j a_j x_{ij} + \epsilon_i$$ donde si no sabes lo que es cada cosa, más vale que no sigas leyendo.

La pregunta a la que el TCL es una muy particular (y mucho menos importante de lo que habitualmente se cree) respuesta

El TCL (teorema central del límite) ayuda a responder una pregunta en algunos casos concretos. Pero a veces se nos olvida que lo importante es la pregunta y sus muchas otras potenciales respuestas. La pregunta es: ¿qué distribución, si alguna, es razonable suponer que puedan tener mis datos? El TCL permite responder ¡normal! en algunos casos singulares que fueron más importantes hace tiempo que hoy en día. Pero llama la atención la importancia (medida, si se quiere, en número de páginas dedicadas a ello en los textos introductorios a la teoría de la probabilidad y la estadística) que se le otorga a esa particularísima respuesta y a su justificación y el poco al de tratar de proporcionar herramientas para tratar de dar una respuesta más o menos coherente a la pregunta general.

Cuidado con la aleatoriedad "pochola"

Abundo sobre mi entrada del otro día. Usando números aleatorios hirsutos, n <- 200 x <- runif(n) plot(cumsum(x - .5), type = "l") produce mientras que library(randtoolbox) s <- sobol(n, 1, scrambling = 3) plot(cumsum(s - .5), type = "l") genera que tiene un cariz totalmente distinto.