Modelos directos, inversos y en los que tanto da
Continúo con esto que concluí con una discusión que me negué a resolver sobre la geometría de los errores.
Que es la manera de entender que los problemas directos e inversos no son exactamente el mismo. Digamos que no es una medida invariante frente a reflexiones del plano (que es lo que hacemos realmente al considerar el modelo inverso).
¿Pero y si medimos la distancia (ortogonal) entre los puntos $latex (x,y)$ y la curva $latex y = f(x)$ (o, equivalentemente, $latex x = f^{-1}(x)$)? Entonces daría (o debería dar) lo mismo.