Google vs Goodhart vs GPT-n vs el nuevo (y desconocido) equilibrio

Google

Supe de un nuevo buscador de internet llamado Google posiblemente en verano de 1998. Leí sobre él en una revista de informática de la biblioteca pública que aún subsiste delante del lugar donde estaba pasando las vacaciones. Escribí “G-O-O-G-L-E” en un papelito para no olvidar esa extraña secuencia de caracteres y, días más tarde, en un cibercafé, la probé por primera vez.

Supimos pronto que el nuevo buscador, mucho mejor que los entonces existentes, implementaba un nuevo algoritmo, infinitamente más eficiente que los del resto.

Variaciones de la opinión sobre fenómenos pretéritos

Los fabricantes de encuestas suelen estudiar opinión de la ciudadanía acerca de un fenómeno futuro: unas elecciones, etc. Esas opiniones suelen variar en el tiempo, dando lugar a los sesudos análisis que nos regala la prensa habitual.

Pero en alguna rara ocasión, estudian también nuestra opinión sobre fenómenos pasados y es entretenido preguntarse por los motivos de la fluctuación de los resultados.

Comienzo por un ejemplo clásico. Por si no se lee bien, el título del gráfico explica que se trata de los resultados de una encuesta realizada en Francia acerca de la nación que más contribuyó a la derrota de Alemania en 1945.

Aristóteles sobre lo probable y lo improbable (y, más concretamente, sobre la frecuencia de eventos muy improbables)

Un pasaje de un libro que no viene a cuento me puso sobre la pista de una cita de Aristóteles (Retórica, Libro II, Cap. 24), que dice así:

[…] también en los retóricos hay un entimema espurio que se basa en lo que es probable pero no en general, sino probable en determinada circunstancia. Pero ésta no será universal, como lo que dice Agatón:

Quizá alguien diría que eso mismo es probable, que a los mortales les ocurren muchas cosas improbables.

Curso en línea: "R para visualización de datos"

R

Entrada breve solo para anunciar el curso/libro/manual gratuito y en línea R para visualización de datos de Luz Frías —de quien todo lo que diga será poco—.

(Hubo un tiempo en el que única tecnología disponible para hacer llegar conocimiento a la gente era escribiendo libros. Había libros buenos y libros malos pero todos costaban dinero. Así que algunos escribían reseñas sobre ellos que permitían al potencial lector hacerse una idea de si valía o no la pena hacerse con él. Pero la distribución gratuita de de contenido por internet, debería hacer morir el viejo género del escribir sobre lo que otros han escrito. Basta aquí una recomendación —encarecida— y el enlace para que el interesado lo hojee en menos tiempo que costaría leer lo que sobre él pudiera contarse.)

Curso en línea: "R para visualización de datos"

R

Entrada breve solo para anunciar el curso/libro/manual gratuito y en línea R para visualización de datos de Luz Frías —de quien todo lo que diga será poco—.

(Hubo un tiempo en el que única tecnología disponible para hacer llegar conocimiento a la gente era escribiendo libros. Había libros buenos y libros malos pero todos costaban dinero. Así que algunos escribían reseñas sobre ellos que permitían al potencial lector hacerse una idea de si valía o no la pena hacerse con él. Pero la distribución gratuita de de contenido por internet, debería hacer morir el viejo género del escribir sobre lo que otros han escrito. Basta aquí una recomendación —encarecida— y el enlace para que el interesado lo hojee en menos tiempo que costaría leer lo que sobre él pudiera contarse.)

Sobre la correlación entre Y y la predicción de Y

Supongamos que tenemos un modelo construido sobre unos datos $(x_i, y_i)$. Para cada $x_i$, el valor $y_i$ es una realización de una variable aleatoria $Y_i$ con distribución $F_i(y)$. Por simplificar, podemos suponer, además, que para el ajuste se utiliza el error cuadrático.

Entonces, lo mejor que puede hacer el modelo es encontrar la media $\mu_i$ de cada $Y_i$ —bueno, en realidad, querría encontrar $\mu_x$ para cada $x$ potencial, pero hoy vamos a dejar esa discusión aparcada—.

Significativo vs significativo

Con esta entrada voy a abundar en una literatura ya muy extensa y que muchos encontrarán ya, con razón, aburrida, sobre las diferencias entre significativo y significativo.

Véase:

En 2006, el ingreso anual bruto medio de los médicos era de 70.717 USD […] para los países con el sistema Bismark y 119.911 USD […] para los del sistema Beveridge. Las diferencias no son significativas (p=0.178).

Olé.

El párrafo está extraído de PNS89 International comparison of the remuneration of physicians among countries with bismarck and beveridge health care system y traducido por un servidor.

Raking, Introdución al

I.

Ni que decirse tiene que a partir de las probabilidades conjuntas pueden construirse las marginales: se integra (o suma) y ya.

II.

El problema inverso es irresoluble: es imposible reconstruir las conjuntas a partir de las marginales. Las conjuntas, condicionadas a las marginales, pueden tener muchos grados de libertad.

Sin embargo, a petición de los usuarios finales, los comerciales de la estadística se han comprometido históricamente a resolver ese problema de manera científica. Así que los curritos de la estadística, supongo que muy a su pesar, han tenido que desarrollar cosas como las cópulas —esas sí que son verdaderas weapons of math destruction— y el raking, que es lo que nos ocupa hoy.

Nuevo vídeo en YouTube: "Sobre chatGPT"

Aunque lo publiqué ya hace unos días, aquí llega formalmente el anuncio de mi vídeo sobre chatGPT:

Tiene una primera parte en la que hablo de cosas que hace bien, regular y mal y una segunda en la que investigo su dimensión moral.

Si no podemos dilucidar si algo crece lineal o exponencialmente, ¿qué podemos saber?

Todos sabemos qué es el crecimiento lineal y el exponencial. Todos sabemos que las funciones lineales y exponenciales tienen un aspecto muy distinto. Sería ocioso —¿insultante incluso?— sustentar gráficamente esas afirmaciones.

Por eso me llamó grandemente la atención el reciente artículo de Thomas Philippon, Additive Growth, que comienza, con mi traducción, así:

De acuerdo con el libro de texto de Solow de 1956, los modelos de crecimiento económico dan por hecho que la PTF [productividad total de los factores] crece exponencialmente: $dA_t = gA_tdt$, donde $A$ es la PTF y $g$ es o bien constante o prácticamente constante. Yo [T. Philippon] he examinado datos de muchos países y periodos y he encontrado que, en casi todos los casos, el crecimiento de la productividad es de hecho lineal: $dA_t = bdt$ donde $b$ es una constante, al menos durante largos periodos históricos.