Estadística Bayesiana

La peor página de N. Taleb

Dicen algunos —bueno, más bien, lo suelo decir yo— que la intersección de lo nuevo, lo interesante y lo cierto es el conjunto vacío. Ahora, N. Taleb nos regala una página en el que trata novedosamente un tema que lleva siendo intereante desde, al menos, lo puso encima de la mesa el reverendo (Bayes) hace 250 años. Ergo…

Veamos qué nos cuenta. Se plantea el problema de unos experimentos (independientes) de Bernoulli con probabilidad de ocurrencia desconocida $p$. Hay $n$ ensayos y $m$ éxitos. Y afirma que el mejor estimador es

¿Es Bunge un fraude?

Mi primer contacto con la obra de Mario Bunge fue en mi época de estudiante en Zaragoza. Por algún motivo —probablemente, porque en aquella época repasar los lomos de los libros en las bibliotecas y librerias era el equivalente al perder el tiempo en internet de hogaño— cayó en mis manos un libro suyo. Solo recuerdo que leerlo requirió más empeño que aprovechamiento trujo a aquel chaval de provincias.

El segundo —hará un par de años— fue una grabación de una conferencia que dio en Buenos Aires. La guardé en algún lugar para comentarla en estas páginas porque de todo lo que contaba en una hora no alcancé a darle la razón —más bien, el beneficio de la duda— más que en que llovía en Buenos Aires esa tarde. Desafortunadamente, no he podido dar otra vez con ella.

Sobre el teorema de Aumann

[Del que ya hablé hace un tiempo desde una perspectiva diferente.]

Prioris

A y B (dos personas) tienen la misma priori Beta(1, 1) —que es uniforme en [0, 1]— sobre la probabilidad de cara de una moneda.

Datos

Entonces A presencia una tirada de la moneda (a la que no asiste B) y es cara. Su priori se actualiza a una Beta(1, 2).

Luego B presencia una tirada de la moneda (a la que no asiste A) y es cruz. Su priori se actualiza a una Beta(2, 1).

¿Dónde son más frecuentes las muestras de una distribución en dimensiones altas?

Esta es una cosa bastante contraintituiva. Uno diría que en la moda, pero no es exactamente así.

Veamos qué pasa con la distribución normal conforme aumenta la dimensión.

En una dimensión son más frecuentes los valores próximos al centro:

hist(abs(rnorm(10000)), breaks = 100,
    main = "distribución de la distancia al centro")

Pero en dimensiones más altas (p.e., 10), la cosa cambia:

library(mvtnorm)
muestra <- rmvnorm(10000, rep(0, 10),
    diag(rep(1, 10)))
distancias <- apply(muestra, 1,
    function(x) sqrt(sum(x^2)))
hist(distancias, breaks = 100,
     main = "distribución de la distancia al centro")

El teorema de Bayes como la versión modal del modus tollens

El otro día alguien argumentaba (de una manera que no voy a adjetivar):

  • La lógica (proposiciona, de primer orden) es importante (si lo que se pretende es actuar racionalment), la probabilidad no tanto.
  • El teorema de Bayes es solo un resultado trivial dentro de una disciplina mucho menos relevante que la lógica.
  • Ergo, ¿por qué tanto coñacito con el dichoso teorema de Bayes?

Como había alguien equivocado en internet, sonaron todas las alarmas que tengo colocadas en casa y tuve que acudir a enderezar el tuerto. Así, respondí algo así como que:

Encuestas (electorales), medios y sesgos

Me he entretenido estos días en crear un modelo que represente la siguiente hipótesis de trabajo:

Los encuestadores electorales combinan tres fuentes de información: sus propios datos, el consenso de los restantes encuestadores y la voz de su amo, es decir, el interés de quien paga la encuesta.

Es un modelo en el que se introduce (y se mide) el sesgo que introduce cada casa en los resultados. De momento (¡no fiarse!, léase lo que viene después) he obtenido cosas como estas (para el PP):

Más sobre el artículo raro, raro, raro

No he podido evitar darle vueltas al artículo que comenté el otro día aquí, Bayesian Estimation with Informative Priors is Indistinguishable from Data Falsification, de la manera más caritativa posible. En particular, me he preguntado:

  • ¿Por qué se escribió (en lugar de no haberse escrito)?
  • ¿Por qué se escribió en esos términos (en lugar de en otros)?

Obviamente, el artículo no enseña nada desde el punto de vista técnico. Desde el metodológico, tampoco: recuerda más que a otra cosa, a esos físicos que muchos años después aún despotricaban contra la teoría de la relatividad.

Un artículo muy raro, raro, raro

Hoy voy a comentar un artículo muy raro que me ha llegado recientemente y que se titula nada menos que Bayesian Estimation with Informative Priors is Indistinguishable from Data Falsification.

Argumenta el artículo alrededor de lo siguiente (que creo que ya sabemos todos: son ejercicios matemáticos básicos de un curso introductorio de probabilidad):

  • Que la inferencia bayesiana con prioris planas (degeneradas, de ser necesario) es equivalente a la inferencia frecuentista.
  • Que para tres ejemplos concretos (binomial, Poisson y normal), de usarse prioris a través de las distribuciones conjugadas, el resultado de la inferencia bayesiana es equivalente a haber añadido datos (problemas de redondeo aparte) a los originales.

Luego añade unos experimentos numéricos para dejar constancia de que no se ha equivocado en las cuentas y mostrar que, efectivamente, sustituyendo las letras por números y operando se obtienen los resultados que anuncian las matemáticas con su árido simbolismo.

¿Criptobayesianismo?

Titulo así a cuenta de un proceso mental de varios saltos producidos a partir de la lectura del muy recomendable Five ways to ensure that models serve society: a manifesto. En particular del parrafito

Quantification can backfire. Excessive regard for producing numbers can push a discipline away from being roughly right towards being precisely wrong. Undiscriminating use of statistical tests can substitute for sound judgement. By helping to make risky financial products seem safe, models contributed to derailing the global economy in 2007–08.

Análisis (bayesiano) de pruebas con sensibilidad/especificidad desconocida

Esto tiene que ver con lo del estudio ENECOVID, por supuesto.

Esto tiene que ver con los ajustes que hay que realizar en los resultados por la menos que perfecta sensibilidad y especificidad.

Porque no basta con lo que diga el prospecto de los kits chinos.

Por eso es recomendable leer Bayesian analysis of tests with unknown specificity and sensitivity.

Coda: Cuando era matemático y comencé a estudiar estadística, me llamaba mucho la atención (por no decir que me escandalizaba) la alegría con la que estimadores sujetos a error de un modelo se insertaban como verdad divina en otro. Que es lo que aparentemente se hace cuando el estimador puntual de sensibilidad y especificidad copipega tal cual en las fórmulas del ajuste.